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Abstract

A model for the mild wear of two contacting solids and an analytical example are proposed in this article. The model
includes the presence of an interface made of damaged materials, fluid and wear debris. It consists in a wear criterion,
an interface law and complementary relations deduced from the mass conservation. A thermodynamical analysis
provides energy-release rates associated with the evolution of the surfaces in contact and the mass fluxes due to wear.
They are used as characteristic quantities in the formulation of the wear criterion and wear velocities. Given that the
physics of the interface modify the global contact conditions, micromechanical considerations are developed and result
in an interface law, modeling its evolution with an internal parameter: the volume fraction of wear debris. The relation
between this parameter and wear velocities is obtained with the mass conservation equation, which completes the model
and allows to apply it in a numerical simulation. As an example, a problem of a rigid punch sliding on an elastic worn-
out half-plane is treated by means of integral equations, accounting on the presence of an interface according to the
previous modeling. Stresses and strains are obtained analytically, as asymptotic expansion fields. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Although contact-wear phenomena are of frequent occurrence, many difficulties appear when engineers
attempt to control them. Friction between contacting surfaces induces damage of materials, producing
surface and subsurface cracks. As wear occurs, asperities of damaged surfaces are cracked, leading to loss
of material and debris appearance in the contact interface. By the way, as wear occurs, geometrical changes
take place and contact conditions are significantly modified because of the presence of wear particles. Life
expectancy of machines can be reduced seriously, which implies the need for specific controls. This phe-
nomenon is observed in nuclear power plants where security must be ensured, despite the wear of some
components, therefore implying these components to be changed frequently. For complex structures, a

" Tel.: +33-1-69-33-35-08.
E-mail address: dragon@lms.polytechnique.fr (M. Dragon-Louiset).

0020-7683/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
PII: S0020-7683(00)00065-2



1626 M. Dragon-Louiset | International Journal of Solids and Structures 38 (2001) 1625-1639

solution to this problem consists in using numerical simulations as a means to predict damage and to select
the most resistant materials. This raises the question of a predictive model for contact wear, which could
enable the evaluation of damage and loss of material by numerical calculations.

However, during the contact wear process, several mechanisms occur, either simultaneously or not,
making an attempt to analyze very difficult. Loss of material produced by asperities cracks can be increased
by corrosion; particles can be abrasive, or on the contrary, small enough to cause few effects in the interface.
Ko (1997) precisely describes the different wear mechanisms and provides an analysis of the wear of
components in nuclear power plants. His article confirms the complexity of wear problems, making their
modeling difficult under conditions considered. Several models are presented in (Ko, 1997). An analysis of
more than 5000 papers published by “Wear” is proposed by Meng and Ludema (1995). In the literature,
mostly empirical equations are proposed, established for a particular system using specific parameters.
These works provide informations about specific wear mechanisms and processes, but cannot be applied to
other experimental conditions, which means that related equations are no more available. Some authors try
to compare mechanical properties of materials, like fatigue limit, with their resistance to wear. Many
studies are based on the Archard’s equation (Archard, 1953) giving the volume of lost material as pro-
portional to the normal load, to the sliding distance, the coefficient of proportionality being called wear
coefficient. This one depends on operating conditions, therefore experimental data are needed for reliable
predictive simulations. Stromberg et al. (1996) developed a comprehensive generalized standard model for
wear, where Archard’s law is introduced and its coefficient slightly modified. Few analytical models exist;
one can refer to Zmitrowicz (1987a,b,c) for a complete mathematical framework.

More generally, global existing models do not take account of the physics of the interface, being unable,
by the way, to provide fair results when different mechanisms can occur. As written in (Singer and Wahl,
1999), macroscopic modeling should not ignore the influence of the interface. Moreover, the complexity of
a complete micromechanical model discourages its use for macroscopic modeling. Nevertheless, as pointed
out by Meng and Ludema (1995), the translation from microscopic observation to macroscopic laws may
be done anyway, as a necessity for a predictive wear model.

The aim of this work is to develop a macroscopic model for mild wear, which includes interface related
parameters, complex enough to describe the influence of the preponderant physical phenomena, and simple
enough to allow numerical simulations. A basic system of two contacting bodies with an interfacial fluid is
studied. The fluid can be a lubricant or not, compressible or not. The loss of material is characteristic of the
wear of one or both solids.

In this paper, a thermodynamical analysis of this system is advanced. Conservation laws are written
taking into account the mass fluxes and the moving boundaries due to wear. From this, energy-release rates
are obtained, depending on the stress and strain state in the sound material and the damaged one. A wear
criterion for each solid is formulated, based on the energy-release rates. The interface contains the damaged
parts of both materials and the third-body (fluid and debris). An interface model is necessary to determine
the quantities involved in the wear criterion and to calculate the mechanical state of the tribological system.

This macroscopic model is presented in Section 2. In Section 3, this model is built on micromechanical
considerations, including an internal variable (volume fraction of wear particles in the interface). It may be
interesting to compare the interface law inferred from this study with the Ruina—Kirchhoff friction law
(Scholz, 1998), also expressed with an internal evolutive parameter. The mass conservation provides a
relation between the internal variable and the wear criterion presented in Section 2.

These complementary studies allow a wear simulation. The problem of a rigid punch sliding on an elastic
half plane submitted to wear and their interface is proposed in Section 4, as an example, treated analytically
with integral equations. It may be noted that generally, both contacting solids are not simultaneously losing
material;, consequently, assuming that the punch is not worn-out is not an important restriction. The
problem’s statement results in one essential equation (called the wear equation) to solve. Assuming the fluid
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incompressible, asymptotic expansion solutions with respect to the small parameter (fraction of wear
particles in the interface) are searched, which allows analytical treatment of the wear equation. The zero-
order solution without wear is given; the first-order solution with wear of the elastic half plane can then be
determined.

2. Macroscopic modeling of contact wear phenomena

In this section, a thermodynamical approach of a system of two contacting solids is developed, in the
case of mild wear of one or both solids and loss of material. The interfacial layer of the bodies is more
precisely described in the next section; in this one, a global model is built with the assumption of mass fluxes
from the worn solids to the interface, non-zero fluxes being characteristic of wear phenomena. Similar
assumptions are made in a complex mathematical framework for wear of two contacting solids proposed by
Zmitrowicz (1987a,b,c); however, his study needs further physical interpretation. Before developing the
thermodynamical approach, let us consider Stribeck’s curves in order to distinguish mild wear from severe
wear mechanisms, and to infer some evidence for our study.

2.1. Stribeck’s curve: regimes I-I11

Wear experiments provide x—y plots with x = n¥/p and y, the friction coefficient (1: fluid—lubricant
viscosity, V: relative velocity of the contacting bodies, p: pressure) called Stribeck’s curves, schematically
represented in Fig. 1. In the case where V' /p is small, it may be noted that the friction coefficient is high (I),
which corresponds to dry and severe wear, when surfaces are not entirely protected by the fluid. As ¥V /p
increases, the fluid is spread over the contacting surfaces and the friction coefficient decreases. An unstable
phase (II) follows, with an incomplete fluid cover: here combined dry and lubricated wear mechanisms
occur. Phase (III) corresponds to a stable lubricated hydrodynamic regime, where an interface made of fluid
is formed. Havet (1998) presents some tribological aspects of lubrication and Stribeck’s curves, giving
references on this topic.

This confirms the interaction between the so-called first bodies (contacting solids) and the third body
(fluid and wear products). This evidence results in the necessity to associate a global approach to the wear
modeling with the description of the interface evolution, through some internal state variable as will be
proposed later. Our purpose in this section is to propose a macroscopic model for the wear of two bodies in

friction
coefficient

nvip

Fig. 1. Stribeck’s curve.
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contact, the interface being the subject of principal interest in Section 3. Both complementary theoretical
approaches, thermodynamical analysis and interface law, can then be used for numerical simulations of the
wear of a structure.

2.2. The energy release rate approach in wear mechanics

In the present analysis, assuming that wear produces a characteristic dissipation, energy release rates for
the phenomena are determined. Energy release rates are used in fracture mechanics to describe cracks
propagation. Here, these quantities characterize the production of wear debris by damage of solid and
particle detachment. They are used in the formulation of a wear criterion, which is completed in the further
study by the interfacial film behavior.

2.2.1. Three-domain model

Let us consider a system of two solids in contact in Fig. 2, one moving with respect to the other. Ap-
parently smooth surfaces are, on a large scale, made of asperities; subsurface materials instead of being
unaffected, are damaged, cracked because of pressure and friction due to the movement. I'; and I', are
boundaries separating sound materials from the damaged ones. In fact, the density of cracks is increasing
continuously if we move to the contacting edge of solids 1 and 2. In this model, we will distinguish sound
material from the damaged one approximately and separate them by the boundary I';, considering that
material becomes damaged and goes through I';, once its macroscopic behavior is no more known and
controlled. By the way, we build a three-domain model (third picture in Fig. 2): Q; and Q, are, respectively,
the sound parts of the solids 1 and 2, Q5 is the interface with a complex behavior containing damaged parts
of both solids and the third body made of wear products mixed with the fluid, eventually the lubricant.

When the solid i is worn, particles in Q; are detached and cracks propagate towards sound material,
there are mass fluxes through I'; from Q; to Q. (The fluid and debris flow in Q; is described in the next
section.) Balance equations are written for the system Q = Q; U Q, U 5 with moving boundaries I'; and I';.
See Pradeilles-Duval and Stolz (1995) for the study of a system with moving boundaries, and Dragon-
Louiset and Stolz (1999) for details about this analysis.

2.2.2. Conservation laws and entropy production
Let us introduce the jump or discontinuity of a quantity b through the moving surface I';, i = 1,2:
[[b]? = b — b where b’ defines the value of b on the Q; side of I';, and b* defines its value on the @ side of

sound material Q,
y
damaged Tubsurface T nl
Q E
o WO 5] A PVp 3
@ A A% & 40 A DAY €

Fig. 2. Three-domain model.
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I';. Wi is the geometrical celerity of I';, ' is its unit normal vector as shown in Fig. 2. In Eulerian for-
mulation, U defining the velocity, time derivative of integrals of b over the domain Q is

4 /bdQ =S / {a—b—kdiv(biUi)]dQ—l— 3 / [b(U — W) Pridr. (1)
dt Jo =123 J Qi ot i=12 JTi
Integrals over I'; and I'; come therefore from the conservation laws applied to Q. Conservation equations
are obtained for Q; (i=1,2,3) and I; (i=1,2). Mass conservation gives the mass fluxes u' =
(U — Whn' = —p'v* (i =1,2), with v/ = (W' — U')n’ the material velocity of the boundary I';. The
equation, /[y 4 sT], = [U][(¢¥ + ') /2]n" — [q]}n' (i = 1,2), arises from the law of the conservation of
energy ( denotes the free energy, s the entropy, 7" the temperature and ¢ the heat flux). According to the
second law of thermodynamics, the internal entropy production W is non-negative; for both boundaries I'y,
Ty: Wy, = @[s]} + [¢/T]} =0, and in Q5, Wo, = [0 : & — p(ff +sT) — g(VT/T))(1/T)dy = 0 (e(x) is
the thickness of the layer). We suppose from now the continuity of the temperature 7 through both
boundaries (T = T" on I7).

2.2.3. Wear criterion

The entropy production due to the wear of ; was expressed above as W,, which can be transformed
with the equation of conservation of energy and simplified thanks to two assumptions. At first, on the
assumption that wear is mild, we presume that normal stresses are continuous through I';. However, owing
to the balance equation of momentum: [¢]’n’ = wW/[U];, (i = 1,2); which presupposes that x/[U]’ is a
second-order term. Secondly, displacements ¢ through I'; are supposed to be continuous. Hadamard

consistency relations provide [U], = —/[VE]'n' (i = 1,2). This enables us to write Wy, in the following
form:
v . ) = n eV ER — piy
Wr, = (g — ¢° R N 2
I Ti (g g ) w1 {g3z _ nzo.Bzvé3lnz _ pllf', ( )

where g’ and g¥ are energy release rates associated to the wear of solid i. Assuming that there exists a wear
threshold g defined for the material of the solid i, we formulate a wear criterion as follows:

if G(g',g¥) =g — g —g* <0, no wear occurs, 3)
if G(g',g*¥) =g — g —g" >0, wear of i occurs.

The velocity v' can be inferred from the criterion where wear occurs: v' = F((G(g',¢")),) where F is a
function ((b), is the positive part of b, i.e. (b), = 01if b<0, (b), = b if b > 0). Several forms of F can be
examined (and confronted with experiments), e.g. linear (v/ = f(G(g', g*)), ), or polynomial. Another way
to determine o' can be to develop a normality law, similar to plasticity; this will be studied in the future.

Although g’ is easy to determine in the case where both contacting solids are elastic (it seems sufficient
for mild wear process), g*' needs further study. The influence of the interface on the first bodies is expressed
by g¥; it contains the physics of Q;. We attempt to approach the behavior of the interface in the following
section.

3. A multiscale model of the third body
3.1. The three-scale third body
Our aim is not to describe and model the microscopic mechanisms which occur in €3, but to use mi-

cromechanical considerations in order to describe in a realistic manner the Q; physics and then model it on
a mesoscopic scale. A relevant interface law is inferred from this analysis, for applications on a macroscopic
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Fig. 3. From the microscopic scale to the macroscopic one.

scale. Consider the Fig. 3 where three scales from the microscopic to the macroscopic one via a mesoscopic
scale are represented:

(w), microscopic scale: Asperities in the third body on microscopic scale, wear mechanisms. Some authors
propose studies of plastic strains, cracks propagation, contact between two asperities on the microscopic
scale (Barbarin, 1997; Stupkiewicz and Mréz, 1999).

o (3, Q3,: damaged material, cracks, wear particles jammed into the holes between asperities. The fluid
does not soak completely into the cracks;
e (233: contact between asperities which are progressively detached. The fluid carrying the debris along.

(m), mesoscopic model: Third body on mesoscopic scale: Q3 = Q31 U 233 U 23,. This three-area model was
proposed by Godet (1982; 1990) and completed by Georges (1999), Georges et al. (1993), Berthier (1989;
1990), Berthier et al. (1988).

e (3, Q3: porous, damaged media with no shear, no shear-stress but only strains e, &,, and stresses oy,
Oyys

e Qs3: solid particle suspension forming a sheared layer and viscous fluid flow (Dragon-Louiset, 2000).
Strains ¢,, and ¢, shear-stress o,, and compressive stress g,,.

(M), macroscopic model.: Interface on the macroscopic scale: I' = I'y U Q3 U I';. There are several models
and friction laws in the literature with an internal variable, for example the Ruina-Kirchoff’s friction law
(Scholz, 1998). In this paper, we will propose an interface law adapted to the wear phenomena, giving a
relation between the compressive stress o,, and the strain ¢, the shear-stress o,, and é,, (because of the
viscosity of the solid particle suspension). o,,, &, &y, and &, are related to the boundary conditions on I'
and I'; for a macroscopic point of view. Note: the friction coefficient can be inferred from the interface
behavior by y = 6,,/7,, where overlined fields mean averages on the layer thickness.

3.2. Macroscopic interface law

We will assume, for the application, steady-state wear, 2D, plane strain, incompressible fluid, 2 moves at
the speed of —Vx with respect to 1, x and y axis are fixed in 1.

3.2.1. Internal variable for the layer Q;
Internal variable: ¢ volume fraction of the particles (¢ = @' + ¢ particles from Q; and ,) then ¢' is the
volume fraction of fluid and ¢' + ¢? + @' = 1. Relations between ¢, e, v wear velocity and V the relative
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velocity between 1 and 2 are given by the conservation of mass for the three types of material (debris of 1,
debris of 2 and fluid).

The balance of mass is (0p®/dt) + div(p*U?) = 0 where p* = p'o' + p>¢@* + p'¢'. In the steady-state
case, e = e(x,y), ¢' = ¢'(x,y) for i =1,2,f. Mean values of volume fractions can also be defined by:
7 (%) = (1/e(x)) [ ¢'(x,y)dy for i = 1,2,f.

As we described Q;, Qs;, i = 1,2 are the intermediate areas for the material, which is firstly damaged
during the process, goes through I'; at the wear velocity v*, before being detached and then become a wear
debris. Secondly, this material turned into a wear particle is taken away from Q;; to Q3;. In Q3;, ¢ ~ 1. We
introduce the parameter o'(x), i = 1,2, the volume fraction of material i, which goes from €3; to Q3;, as-
suming that only a part of the material in Qs; is removed into the Q33 mixture. (o can also be considered as a
constant parameter, equal to 1 if the last assumption cannot be made.) We can consider that the flow of
wear particles goes from Q3; to Q33 at the same velocity as it goes through I'; (v').

We assume that the fluid is incompressible and the particles rigid once detached, and take —V /2 as
averaged shear velocity for the particles and the fluid in the interface, treated as a homogeneous layer. This
means that the two-dimensional fluid flow near the end points x = +a of the contact interface is dis-
regarded. Taking account of particle incomes o’v'dx due to wear in a section of Q3 between x and x + dx, the
balance of mass can be written for solid particles and fluid, in the steady-state case:

solid o (x)v'(x) + g g [@'(x)e(x)] =0, i=1,2, 4)
fluid ° [(1 —9'(x) — Ez(x))e(x)} =0. (5)

Ox
If there is no wear particle in the interface, its thickness is the sum of rugosities of both solids equal to ey;
Eq. (5) becomes (1 — @' (x) — @°(x))e(x) = ey on the one hand. On the other hand, the wear criterion gives
the velocity v'. Both relations (4) and (5) are enough to determine = @' + @ needed to evaluate stresses
and strains in the interface, giving by the way the interface law.

3.2.2. Stresses and strains in the interface
Normal compression and viscous shear:

Oy = K(@)Ey,w (6)
Gy = 1N(P)éx- (7)
Strains are given by the boundary conditions:
uy — u;
g, = ——2, 8
VY e((p) ( )
- il —i?
= 9
The coefficient x(¢) = [({(¢)] ' = [(@'/K") + (¢*/K?) + (' /Kf)]q corresponds to Reuss’s law of strains
additionality or stress homogeneity. In the case of an incompressible fluid, k() = [{(@)] "' = [(@'/K") +

(@/K*)]”". The coefficient (@) = n,[1 +2.5¢] designates the viscosity given by Einstein’s law for the
viscosity of a solid particle suspension (Landau and Lifchitz, 1971; van der Werff and de Kruif, 1989; de
Kruif et al., 1985; Dragon-Louiset, 2000). In the case of mild wear, ¢ remains small (¢,,, ~ 0.6 for a
compact assembly of circles of same radius).

The wear criterion needs to be evaluated near the boundaries I'; for both sides Q; (g°) and Q3; (g¥). The
behavior of Q; and Q, is known, so g’ can easily be calculated and the behavior of Q;, for which mean
values are no more appropriate, will give g*’. In Q3;, ¢’ ~ 1, 6,, # 0 and g,, # 0. a, = o3 u' = u*. Then, we

w2
i 3 i r T A R 3 i \3i
can take g}, = o) = k(@' = 1)gy, &, =&, =u,, 05, = '(¢" = 1)&;,.
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Later on, we will employ the quantities m[¢] = 1(¢)/e(¢) and k[¢] = r(¢) 'e(p) = {(¢)e(p), where @
was noted ¢ for simplicity. The following resumes the three modeling steps.

3.3. The interface model

(1) wear criterion and velocity
Gghg)=¢-g"~-¢" 20 v=F(G(g g"),) (i=12).
(2) conservation of mass

solid oci(x)vi(x)+gaax[ iWe(r)] =0 (i=1,2),

fluid (1 — @'(x) — ¢*(x))e(x) = ey.
(3) viscous shear and pressure

0y (x) = mo](x) (i, — i), 0, ()] (x) = 1y (x) — 07 ().

4. The wear equation for incompressible fluid

The case of an elastic half-space (solid 2) and a cylindrical rigid punch (solid 1) is examined with an
incompressible fluid. Only one of the solids is worn, the half-space, it follows that there is only one kind of
debris in the interface: ¢ = @ and 1 = @ + @'. In order to obtain displacements, stresses and strains at the
surface of the half-space, which is covered in the contact area by the interface made of fluid and wear
debris, we will use the Galin’s integral equations (Galin, 1953). The study of an elastic half-space submitted
to contact wear due to a rigid punch was done by Galin (1976) and Galin and Goriacheva (1977). In those
papers, there is nevertheless no wear debris between the punch and the half-space, therefore wear phe-
nomena in those studies has no influence on the contact pressure and displacements. Our purpose is to take
into account the presence and the influence of the third body using the interface model.

4.1. Problem’s statement

The x- and y-axes are moving with the punch, whose symmetry axis is off-center and has abscissa x,. The
dlsplacements of the punch u! denoted uP are u?, with the following assumption # ~ 0, and uf(x) =
o+ (x— xo) /(2R). From now on, ©*, o?, u?, @, G,y, K and @, are, respectively, denoted as v, o, U, @, Gy, K
and oy, in order to simplify.

The contact area is bounded by x = a and x = —a. Ahead of the punch, no debris is present in the in-
terface: ¢@(x =a) =0. Let us take o a constant parameter; the balance of mass Eq. (4) becomes
av(x) + (egV /2)(0¢/0x)(x) = 0. By the way, once v is induced by the wear criterion, ¢ is given by

2 X
o(x) = —% o(0)dr, x<a. (10)
In the case of mild wear, keeping first-order terms for ¢ in the model of the interface is enough. Relations
between stresses and displacements described before are oy, = 1n(¢@)/e(@)@® — i) and o,{(p)e(p) =
ub — u,. The fluid being incompressible, x(¢p) = [L(@)] " = [@/K]"". The layer’s thickness e(¢) = ¢o/(1 — ¢)
is given by Eq. (5), thus by linearization, we denote
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mlp] = Zgzi ZZ—S(l +1.5¢) and kg = {(p)e(e) =%¢> (11)
Assuming that #® ~ 0 for the punch and &, = —V(0u,/0x) >~ —V for the half-space, we obtain

00(x) = mlgl ()il — i) = oy(x) =21+ 150V, (12)

7y (Vk[@](x) = up(x) —u,(x) = ay(x) 2—0 P(x) = uy(x) — uy(x). (13)

Because of the assumptions made on #? and i, Eq. (12) is similar to a plasticity threshold, which depends
here on the internal variable ¢ and on V. It is consistent with phase III of Stribeck’s curve, where

t/pxnV/pie tx V.
4.2. The wear equation

Galin’s equations (Galin, 1953) are

E  du, (1 —2v) 1 (9 oy(s)ds
e W =Sy ey [ 2 (14)

E  du, (1 —2v) 1 [“0,(s)ds
2(1—VZ)K(x):_2(1—v)"-‘y(x)+va/, }s—x ' (15)

Reciprocal relations can be found in Bui (1993). The principal value is denoted as pv, defined by
b X—€ b
fds [ f(s)ds f(S)dS} | (16)
a S—X e—0 a S—X X+e S —X

Solutions f of pv f:(f (s)ds/(s —x)) = g(x) where g is a given function satisfying some regularity conditions,
can be found in (Muskhelishvili, 1953, 1977). With ¢; = E/[2(1 —v*)] and ¢, = (1 —2v)/[2(1 —v)]. By
replacing u, using Eq. (13) in Eq. (15), and o,, using Eq. (12) in both relations (14) and (15), we obtain

clczll;(x):QGW( )Jr%p %/:%, (17)
e “ a,(s)ds dup
% S lonot] +pvi [ 2L o o) (19)

The criterion gives v = F(g%,¢%), ¢ is determined by the balance of mass equation (10) and a,, by the
viscous interface law equation (12). We have to solve Eq. (18) to obtain a,, (Where a,, appears as well in the
integral pv as outside this integral), u, being then given by Eq. (13) and u, by Eq. (17). Finally, the wear
equation (18) for oy, is the one to solve in order to obtain stresses, displacements and strains at the surface
of the half-space. Its solution can be computed, or evaluated approximately for a given type of function (for
example if ¢y, is developed into a Fourier series or into Chebyshev’s polynomial). Another way to solve this
equation is to search asymptotic expansion solutions, with respect to a small parameter related to ¢(x). This
is discussed in the following sections.

The normal stress g,, can be computed. An iterative algorithm can determine approximated fields o, &,
then calculate v, ¢, solve the wear equation (18) and update ¢, repeating this until convergence. This
convergence is briefly discussed here.
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Considering that the normal stress g, is obtained knowing oy, after the evaluation of vy and ¢, all
mappings are linear except the first one vy = F(0y), which is generally nonlinear, depending on the physics
and experimental conclusions. Assuming that F is a Lipschitzian function and the mapping M giving the
solution 6,1 = gy + M(0,) can be proved to be a contraction for small values of ¢, the problem solution is
the fixed point of the nonlinear mapping: ¢ = oy + M(o) (Courant and Hilbert, 1962). By the way, the
convergence of the algorithm can be proved.

5. Asymptotic expansion solutions for a mixture with incompressible fluid

In the case of mild wear, ¢ is assumed to be small. We will consider that the zero-order solution is
obtained for ¢ = 0 (no wear occurs). Higher-order solutions are deduced from the zero-order one and other
lower-order solutions. The small parameter used for the expansion can be w = sup, ., [¢(x)[; the asymp-
totic expansion fields take the form:

v = vl —l—w172>+ -
QD_(U(,D +w§0 =+

ux—u(o—&—wu +wu§2)+ -
uy: } +a)u +w2u(2)_|_ SN (19)
Oy = 03 + 00 —|—w20<2)+ -

Xy
aw—afg +wa}>+wzaﬁ)+---

with no zero-order terms for v and ¢; v'", ¢! being the normalized wear rate and volume fraction, re-
spectively. The following equations given in Section 4

(x — )C())z
p = _—
up(x) =0 + 2R) (20)
v=F(g* g, (21)
0 =% [Toar, x< (22)
o(x Voo v , x<a,
V
0 (x) = ’72_0 [1+ L5p(x)], (23)
€y b
O (x) 2 @(x) = ) (x) — u,(x) (24)
will now be used to find zero-order and higher-order solutions together with the wear equation
e d 1 [“0,(s)ds dup noV
o oot +pvs [P0 T+ B[+ o), (25)
du, , . oV 1 [[1+15¢(s)]ds
cldx(x)—CZO-yy()+—0p E/,GT' (26)

The wear rate v is function of the energy release rates g> and g2, which depend on o, and a,,. Let v at
the i-order be obtained with only the (i — 1)-order stresses o™, i) = Flg?, g (o), ¢l7V)]. This
assumption is not necessary to solve the problem and has no important consequence on its solution, but it
simplifies the equations for analytical study. Notice that ¢-! is obtained from &~V = (dul~V /dx).
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Introducing asymptotic expansions in Eq. (25), we obtain

1 g |0WV(s) + wall)(s) + w?al)(s) + - - |ds
va/_ [ ]

= hy(x) + ohy (x) + @Phy(x) + - - (27)

. s —x

with
duP %4
h()(x) = C] - (x) _|_6.2Vleo_o’
B = —e 2 &[S o 0] + e pix)  for iz 1,

Because uf is given by Eq. (20), A is a regular function and satisfies a Holder condition on [—a,d]
(Muskhelishvili, 1953). Zero-order solution can easily be determined, as shown hereafter. This is no more
valid for higher orders. However, on the assumption that first-order terms for ¢ provide precise enough
results (Section 4.1), there is no sense in searching higher-order solutions; thus, only zero- and first-order
problems are solved. Total pressure in the contact area is inferred from both zero- and first-order solutions:

P =P+ wP = —/ [0(0) (x) + wog) (x)} dx. (29)

W
—a

(28)

5.1. Zero-order solution

At first, let us consider the contact without wear to determine the zero -order solution. According to Eqgs.
(23) and (24), respectively, o)) =,V /eq, ul? (x) = ub(x). The stress o)) is given by Eq. (25), where ¢ =0
and the punch displacement was replaced by Eq. (20):

1 6 9(s)ds Vv
p‘_/ n() Clx+|:02'70 _ CGixo

T s —X R ey R

} = hy(x). (30)
(See Appendix A for the solution.) The consistency condition f ho(s)(a® — s%)~ 245 =0 concerning the
right-hand side of Eq. (30) yields 4(x) = ¢;x/R and x, is obtained by setting the bracketed term of Eq. (30)
to zero. The zero-order solution 053) is, therefore, the Hertzian contact pressure. We finally determine

(du” /dx)(x) using Eq. (26). The zero-order solution is given by

0 =0,
¢ =0,
V
chg):%_,
€o
aig)(x) = —%\/a2 —x? (31)
du® 1) noV a—x
X — _ 2N g2 — 2 0 1 -
dx (x) RVC T +Tl',6‘1€0 n(a—&—x)’
Cz nOVR
Xo — —
C1 €

ul (x) = ub(x) = 5+ (x — x0)*/(2R).

5.2. First-order solution

Assuming that v") = Flg?,¢*(a[0), 6lD)], o'V (x) is determined by Eq. (22), ¢
(23) and (24), Wlth a ) solution of

, Xv ! and u ) are given by Egs.
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L[ oy)(s)ds ©) () (1) L5ne V)
o [ S a0 )]+ e o) = () (32)

¢V (a) = 0 but ¢(—a) # 0 Eq. (22). The derivative #, in Eq. (32) becomes therefore singular for x = —a,
because a}ﬁg) = —(c1/R)Va* — x*. (For the criterion presented before and in the case of a linear or poly-
nomial function F Eq. (21), taking into account that v depends on a,, squared, ")(x) (22) is a polynomial
with no singularity.)

It implies that 4, does not satisfy a Holder condition in x = —a. Let us express /; as a sum of four terms;
its regular part A} for x € [—a,d], its singular part A5, wC(a +x) and —wC(a + x) with C a constant to
determine: A (x) = A} (x) + 4} (x) + @C(a + x) — wC(a + x). Instead of solving Eq. (32), we will move for-
ward A5 (x) — wC(a + x) to the next order equation. Thus, Eq. (32) is replaced by

1 [eal)(s)ds |
PV /_a ﬁ:h](x)—ka(a +x), (33)

where the right-hand member satisfies a Holder condition on [—a,a]. The term (1/w)A5(x) — C(a + x) is
added to A, (x) for second-order equation; if further orders solutions are searched, a similar regularization is
needed for each step. The constant C is given by the consistency condition

[ ' [ (s) + oCla +5)] (& — )"/ ds = 0. (34)

The first-order solution is then

U(l)(x) — F[g27g32(0'(0) O,(O))]7

W Txx
200 [*

(1 — (1) t dt

o) =~ [
1.5,V

(1) _ 0 (1)
o) =0 (),
C = given by Eq. (34), (35)

o)({lv) (x) = solution of Eq. (33),
1 a 1
dull) (x) = _26(1)()6) N 1.5110va1 / oW (s)ds

dx c ¥ cieg s s —X

b
a

€o
V() =~ 2o @ ().

u

o

5.3. Analytical example

The first-order term a)(;,) can be determined analytically for a simplified wear criterion. Taking for ex-
ample G(g%,¢%2) = O(a,,)’, and v = B(G(g%, ¢")),, the first-order velocity is given by v(V) = ﬁ@(agj))z,
according to the assumptions made above. Using Eq. (35), the volume fraction ¢!, the constant C and the
first-order normal stress og) are calculated. The parameter «f@ is expressed as y. The constant C is
evaluated so that Aj(x)+ wC(a +x) satisfies the consistency condition Eq. (34), which implies C =
(7c1/R*)2a*[(4/3m)(ci/KVR) — (cang/eq)]. Finally, using the reciprocal formula (A.7) (Appendix A), it
follows from Eq. (33) that
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Fig. 4. o)) (- - -) and 0, = o) + wa).

2
W _ oxef 2 q 22
0y =0y o { ~ %R (& —x7)In

a—x oy |2 5, [ 4 C2My
“dax| + 02 2 ] I S ()
a+x’ ax} * e {x 2a]+ ¢ {371KVR e

(36)

In Fig. 4 are drawn ¢0) as a dashed line and o,, = () + w0} as a solid line (with negative units). (The
following parameters was chosen: £ =2 x 10711, v=0.34,15,=3.5x 1074, ¢y =1 x 107°, R =0.02, V =1,
@ = 0.1, y = 30 x 10~'2) The first-order normal stress wa')) appears as a correction for ¢0) corresponding
to the influence of the wear process. For a fair estimate of this correction, some parameters set here to unity

(e.g. B necessary to evaluate the wear velocity) must be experimentally determined, as material properties.

6. Conclusion

A wear criterion derived from the second law of thermodynamics is proposed in this paper, taking into
account the mass fluxes due to the production of the wear debris. Specific energy release rates arise in this
analysis and can be interpreted as the energy dissipated during the process of asperities cracks. The wear
velocities of the contacting bodies are inferred from the criterion. This global study is coupled to the in-
terface law which describes, in the case of mild wear, the average behavior of this complex area made of
damaged subsurfaces and third body. The volume fraction of particles in this interface is introduced as the
internal parameter. An equation of mass conservation completes the study, providing a relation between
the internal parameter and the wear velocity deduced from the wear criterion.

This model can be applied to two contacting structures losing material, and solved by the finite element
method, but also, as it is proposed in this article, by integral equations. The problem of an elastic half space
and a rigid punch with their interface leads to a single wear equation to solve. Its solution, the normal
stresses in the contact area, can be determined as an asymptotic expansion with respect to the small pa-
rameter: the volume fraction of debris. An analytical example is proposed, for a simplified wear criterion.

The loss of material and the changes of surface geometry can be evaluated easily with this model, where
the wear velocity and the volume fraction of debris are the essential parameters. An important quantity in
tribology is the friction coefficient, which sometimes varies making modeling difficult; it can be inferred here
from the shear and the normal stress in the interface and is not a data.
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Appendix A

Let us solve the Hilbert equation (A.1), where f'is the unknown bounded function at x = +a and g is a
given function, satisfying a Holder condition for x € [—a, a]:

vl ”f(t)dt‘

s t—x

gx)=p (A1)

As will be seen by using the reasoning presented below, whose details can be found in (Muskhelishvili,
1953), f'can be determined by a reciprocal relation. (See also Bui (1977) and Muskhelishvili (1953) for the
complete mathematical background.)

Introducing the holomorphic function @(z) = pv(1/2in) [ (f(¢)dt/t — z) vanishing at infinity, we can
write the following Plemelj formulae valid for x € [—a, d]

()~ () = /(). (A2)
P (x) + o (x) :@:pv% aft(t_)it, (A.3)

—a

where @*(x) is the value of @(x) on the y > 0 side of the line x € [—a,a] and &~ (x) is its value on the y < 0
side. Let Z be a second holomorphic function defined by Z(z) = (a — z)l/ *(a+ z)l/ *. It can easily be noted
that Z satisfies Z*(x) = —Z~(x), thus dividing the second Plemelj formula (A.3) by Z*(x), and similarly the
first one Eq. (A.2), we obtain,

P(x) P (x)  glx)

Z'x) Z (x) iZz+(x)’ (A4)

o) () ()
70 7w 2w (A-3)

Egs. (A.4) and (A.5) are the two Plemelj formulae where f(x)/Z* (x) = pv [ (g(¢)/iZ*(¢))(dt/(t — x)), on
condition that ®(z)/Z(z) vanishes at infinity, with @(z)/Z(z) = pv[1/(2in)] [* [g(¢)/(iZ"(1))][dt/ (¢ — z)]. (for

x € [—a,a], Z*(x) = (&* — x*)'?). Because lim._,, ®(z) = 0 and lim,_, Z(z) = —ilz|, this condition is satis-
fied, provided that
¢ t
_sdr (A.6)
—a (a2 - tz)l/z

Under this condition, f'is given by
1 [ g()de
x:fazfle/zvf/ .
f( ) ( ) p T a (az _ t2)1/2(t_x)
In Section 5.1, the solution to Eq. (30) can be obtained knowing that pv(1/x) f_ll (tdt/ (V1 —£2(t—x))) =
1 for x € [-1, 1], or using expansion of hy(x)/(a® — x2)"/*, where hy is polynomial (Muskhelishvili, 1953).

(A7)
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